skip to main content


Search for: All records

Creators/Authors contains: "Lu, Zhenyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Motivation

    The rapid accumulation of both sequence and phenotype data generated by high-throughput methods has increased the need to store and analyze data on distributed storage and computing systems. Efficient data management across these heterogeneous systems requires a workflow management system to simplify the task of analysis through automation and make large-scale bioinformatics analyses accessible and reproducible.

    Results

    We developed SciApps, a web-based platform for reproducible bioinformatics workflows. The platform is designed to automate the execution of modular Agave apps and support execution of workflows on local clusters or in a cloud. Two workflows, one for association and one for annotation, are provided as exemplar scientific use cases.

    Availability and implementation

    https://www.sciapps.org

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.

     
    more » « less